Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 591
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542274

RESUMO

In adult fish, neurogenesis occurs in many areas of the brain, including the cerebellum, with the ratio of newly formed cells relative to the total number of brain cells being several orders of magnitude greater than in mammals. Our study aimed to compare the expressions of aromatase B (AroB), glutamine synthetase (GS), and cystathionine-beta-synthase (CBS) in the cerebellum of intact juvenile chum salmon, Oncorhynchus keta. To identify the dynamics that determine the involvement of AroB, GS, and CBS in the cellular mechanisms of regeneration, we performed a comprehensive assessment of the expressions of these molecular markers during a long-term primary traumatic brain injury (TBI) and after a repeated acute TBI to the cerebellum of O. keta juveniles. As a result, in intact juveniles, weak or moderate expressions of AroB, GS, and CBS were detected in four cell types, including cells of the neuroepithelial type, migrating, and differentiated cells (graphic abstract, A). At 90 days post injury, local hypercellular areas were found in the molecular layer containing moderately labeled AroB+, GS+, and CBS+ cells of the neuroepithelial type and larger AroB+, GS+, and CBS+ cells (possibly analogous to the reactive glia of mammals); patterns of cells migration and neovascularization were also observed. A repeated TBI caused the number of AroB+, GS+, and CBS+ cells to further increase; an increased intensity of immunolabeling was recorded from all cell types (graphic abstract, C). Thus, the results of this study provide a better understanding of adult neurogenesis in teleost fishes, which is expected to clarify the issue of the reactivation of adult neurogenesis in mammalian species.


Assuntos
Oncorhynchus keta , Animais , Glutamato-Amônia Ligase , Cistationina , Aromatase , Cistationina beta-Sintase , Cerebelo , Mamíferos
2.
J Clin Invest ; 134(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38299594

RESUMO

A major challenge in treating patients with glioblastoma is the inability to eliminate highly invasive cells with chemotherapy, radiation, or surgical resection. As cancer cells face the issue of replicating or invading neighboring tissue, they rewire their metabolism in a concerted effort to support necessary cellular processes and account for altered nutrient abundance. In this issue of the JCI, Garcia et al. compared an innovative 3D hydrogel-based invasion device to regional patient biopsies through a comprehensive multiomics-based approach paired with a CRISPR knockout screen. Their findings elucidate a role for cystathionine γ-lyase (CTH), an enzyme in the transsulfuration pathway, as a means of regulating the cellular response to oxidative stress. CTH-mediated conversion of cystathionine to cysteine was necessary for regulating reactive oxygen species to support invasion. Meanwhile, inhibition of CTH suppressed the invasive glioblastoma phenotype. However, inhibiting CTH resulted in a larger overall tumor mass. These findings suggest that targeting the transsulfuration pathway may serve as a means of redirecting glioblastoma to proliferate or invade.


Assuntos
Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/patologia , Cistationina gama-Liase/genética , Cistationina gama-Liase/metabolismo , Cistationina/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio
3.
Commun Biol ; 7(1): 9, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172561

RESUMO

There are limited therapeutic options for patients with advanced prostate cancer (PCa). We previously found that heat shock factor 1 (HSF1) expression is increased in PCa and is an actionable target. In this manuscript, we identify that HSF1 regulates the conversion of homocysteine to cystathionine in the transsulfuration pathway by altering levels of cystathionine-ß-synthase (CBS). We find that HSF1 directly binds the CBS gene and upregulates CBS mRNA levels. Targeting CBS decreases PCa growth and induces tumor cell death while benign prostate cells are largely unaffected. Combined inhibition of HSF1 and CBS results in more pronounced inhibition of PCa cell proliferation and reduction of transsulfuration pathway metabolites. Combination of HSF1 and CBS knockout decreases tumor size for a small cell PCa xenograft mouse model. Our study thus provides new insights into the molecular mechanism of HSF1 function and an effective therapeutic strategy against advanced PCa.


Assuntos
Cistationina , Neoplasias da Próstata , Masculino , Humanos , Camundongos , Animais , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Proliferação de Células , Neoplasias da Próstata/genética , Resposta ao Choque Térmico
4.
Free Radic Biol Med ; 210: 13-24, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37951283

RESUMO

Cystathionine-ß-synthase (CBS) catalyzes the first step of the transsulfuration pathway. The role of host-derived CBS in Staphylococcus aureus (S. aureus)-induced udder infection remains elusive. Herein, we report that S. aureus infection enhances the expression of CBS in mammary epithelial cells in vitro and in vivo. A negative correlation is present between the expression of CBS and inflammation after employing a pharmacological inhibitor/agonist of CBS. In addition, CBS achieves a fine balance between eliciting sufficient protective innate immunity and preventing excessive damage to cells and tissues preserving the integrity of the blood-milk barrier (BMB). CBS/H2S reduces bacterial load by promoting the generation of antibacterial substances (ROS, RNS) and inhibiting apoptosis, as opposed to relying solely on intense inflammatory reactions. Conversely, H2S donor alleviate inflammation via S-sulfhydrating HuR. Finally, CBS/H2S promotes the expression of Abcb1b, which in turn strengthens the integrity of the BMB. The study described herein demonstrates the importance of CBS in regulating the mammary immune response to S. aureus. Increased CBS in udder tissue modulates excessive inflammation, which suggests a novel target for drug development in the battle against S. aureus and other infections.


Assuntos
Cistationina beta-Sintase , Sulfeto de Hidrogênio , Animais , Humanos , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Staphylococcus aureus/metabolismo , Cistationina , Glândulas Mamárias Animais/metabolismo , Inflamação , Sulfeto de Hidrogênio/metabolismo
5.
Blood Adv ; 8(1): 56-69, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-37906522

RESUMO

ABSTRACT: Cysteine is a nonessential amino acid required for protein synthesis, the generation of the antioxidant glutathione, and for synthesizing the nonproteinogenic amino acid taurine. Here, we highlight the broad sensitivity of leukemic stem and progenitor cells to cysteine depletion. By CRISPR/CRISPR-associated protein 9-mediated knockout of cystathionine-γ-lyase, the cystathionine-to-cysteine converting enzyme, and by metabolite supplementation studies upstream of cysteine, we functionally prove that cysteine is not synthesized from methionine in acute myeloid leukemia (AML) cells. Therefore, although perhaps nutritionally nonessential, cysteine must be imported for survival of these specific cell types. Depletion of cyst(e)ine increased reactive oxygen species (ROS) levels, and cell death was induced predominantly as a consequence of glutathione deprivation. nicotinamide adenine dinucleotide phosphate hydrogen oxidase inhibition strongly rescued viability after cysteine depletion, highlighting this as an important source of ROS in AML. ROS-induced cell death was mediated via ferroptosis, and inhibition of glutathione peroxidase 4 (GPX4), which functions in reducing lipid peroxides, was also highly toxic. We therefore propose that GPX4 is likely key in mediating the antioxidant activity of glutathione. In line, inhibition of the ROS scavenger thioredoxin reductase with auranofin also impaired cell viability, whereby we find that oxidative phosphorylation-driven AML subtypes, in particular, are highly dependent on thioredoxin-mediated protection against ferroptosis. Although inhibition of the cystine-glutamine antiporter by sulfasalazine was ineffective as a monotherapy, its combination with L-buthionine-sulfoximine (BSO) further improved AML ferroptosis induction. We propose the combination of either sulfasalazine or antioxidant machinery inhibitors along with ROS inducers such as BSO or chemotherapy for further preclinical testing.


Assuntos
Ferroptose , Leucemia Mieloide Aguda , Humanos , Cisteína/metabolismo , Cisteína/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes , Cistationina/farmacologia , Sulfassalazina/farmacologia , Aminoácidos/farmacologia , Glutationa/metabolismo , Glutationa/farmacologia , Butionina Sulfoximina/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico
6.
Mol Cell Biol ; 43(12): 664-674, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38051092

RESUMO

Homocystinuria (HCU), an inherited metabolic disorder caused by lack of cystathionine beta-synthase (CBS) activity, is chiefly caused by misfolding of single amino acid residue missense pathogenic variants. Previous studies showed that chemical, pharmacological chaperones or proteasome inhibitors could rescue function of multiple pathogenic CBS variants; however, the underlying mechanisms remain poorly understood. Using Chinese hamster DON fibroblasts devoid of CBS and stably overexpressing human WT or mutant CBS, we showed that expression of pathogenic CBS variant mostly dysregulates gene expression of small heat shock proteins HSPB3 and HSPB8 and members of HSP40 family. Endoplasmic reticulum stress sensor BiP was found upregulated with CBS I278T variant associated with proteasomes suggesting proteotoxic stress and degradation of misfolded CBS. Co-expression of the main effector HSP70 or master regulator HSF1 rescued steady-state levels of CBS I278T and R125Q variants with partial functional rescue of the latter. Pharmacological proteostasis modulators partially rescued expression and activity of CBS R125Q likely due to reduced proteotoxic stress as indicated by decreased BiP levels and promotion of refolding as indicated by induction of HSP70. In conclusion, targeted manipulation of cellular proteostasis may represent a viable therapeutic approach for the permissive pathogenic CBS variants causing HCU.


Assuntos
Cistationina beta-Sintase , Homocistinúria , Humanos , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/química , Cistationina beta-Sintase/metabolismo , Homocistinúria/tratamento farmacológico , Homocistinúria/genética , Homocistinúria/metabolismo , Cistationina/metabolismo , Cistationina/uso terapêutico , Proteostase , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo
7.
Cells ; 12(23)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38067112

RESUMO

Hydrogen sulfide (H2S) was recognized as a gaseous signaling molecule, similar to nitric oxide (-NO) and carbon monoxide (CO). The aim of this review is to provide an overview of the formation of hydrogen sulfide (H2S) in the human body. H2S is synthesized by enzymatic processes involving cysteine and several enzymes, including cystathionine-ß-synthase (CBS), cystathionine-γ-lyase (CSE), cysteine aminotransferase (CAT), 3-mercaptopyruvate sulfurtransferase (3MST) and D-amino acid oxidase (DAO). The physiological and pathological effects of hydrogen sulfide (H2S) on various systems in the human body have led to extensive research efforts to develop appropriate methods to deliver H2S under conditions that mimic physiological settings and respond to various stimuli. These functions span a wide spectrum, ranging from effects on the endocrine system and cellular lifespan to protection of liver and kidney function. The exact physiological and hazardous thresholds of hydrogen sulfide (H2S) in the human body are currently not well understood and need to be researched in depth. This article provides an overview of the physiological significance of H2S in the human body. It highlights the various sources of H2S production in different situations and examines existing techniques for detecting this gas.


Assuntos
Sulfeto de Hidrogênio , Animais , Humanos , Cistationina , Gases , Transdução de Sinais , Óxido Nítrico , Mamíferos
8.
Redox Biol ; 68: 102958, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37948927

RESUMO

Astrocytic dysfunction is central to age-related neurodegenerative diseases. However, the mechanisms leading to astrocytic dysfunction are not well understood. We identify that among the diverse cellular constituents of the brain, murine and human astrocytes are enriched in the expression of CBS. Depleting CBS in astrocytes causes mitochondrial dysfunction, increases the production of reactive oxygen species (ROS) and decreases cellular bioenergetics that can be partially rescued by exogenous H2S supplementation or by re-expressing CBS. Conversely, the CBS/H2S axis, associated protein persulfidation and proliferation are decreased in astrocytes upon oxidative stress which can be rescued by exogenous H2S supplementation. Here we reveal that in the aging brain, the CBS/H2S axis is downregulated leading to decreased protein persulfidation, together augmenting oxidative stress. Our findings uncover an important protective role of the CBS/H2S axis in astrocytes that may be disrupted in the aged brain.


Assuntos
Envelhecimento , Astrócitos , Encéfalo , Cistationina beta-Sintase , Idoso , Animais , Humanos , Camundongos , Envelhecimento/metabolismo , Envelhecimento/patologia , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Cistationina/metabolismo , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo
9.
J Clin Invest ; 134(3)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37971886

RESUMO

While the poor prognosis of glioblastoma arises from the invasion of a subset of tumor cells, little is known of the metabolic alterations within these cells that fuel invasion. We integrated spatially addressable hydrogel biomaterial platforms, patient site-directed biopsies, and multiomics analyses to define metabolic drivers of invasive glioblastoma cells. Metabolomics and lipidomics revealed elevations in the redox buffers cystathionine, hexosylceramides, and glucosyl ceramides in the invasive front of both hydrogel-cultured tumors and patient site-directed biopsies, with immunofluorescence indicating elevated reactive oxygen species (ROS) markers in invasive cells. Transcriptomics confirmed upregulation of ROS-producing and response genes at the invasive front in both hydrogel models and patient tumors. Among oncologic ROS, H2O2 specifically promoted glioblastoma invasion in 3D hydrogel spheroid cultures. A CRISPR metabolic gene screen revealed cystathionine γ-lyase (CTH), which converts cystathionine to the nonessential amino acid cysteine in the transsulfuration pathway, to be essential for glioblastoma invasion. Correspondingly, supplementing CTH knockdown cells with exogenous cysteine rescued invasion. Pharmacologic CTH inhibition suppressed glioblastoma invasion, while CTH knockdown slowed glioblastoma invasion in vivo. Our studies highlight the importance of ROS metabolism in invasive glioblastoma cells and support further exploration of the transsulfuration pathway as a mechanistic and therapeutic target.


Assuntos
Glioblastoma , Humanos , Glioblastoma/patologia , Cistationina/uso terapêutico , Cisteína/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/uso terapêutico , Multiômica , Hidrogéis
10.
Eur J Med Res ; 28(1): 540, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007457

RESUMO

Activating transcription factor 6 (ATF6) is an endoplasmic reticulum stress responsive gene. We previously reported that conditional knockout of hepatic ATF6 exacerbated liver metabolic damage by repressing autophagy through mTOR pathway. However, the mechanism by which ATF6 influence liver metabolism has not been well established. Hydrogen sulfide (H2S) is a gaseous signaling molecule that plays an important role in regulating inflammation, and suppress nonalcoholic fatty liver in mice. Based on the previous study, we assumed that ATF6 may regulate H2S production to participate in liver metabolism. In order to clarify the mechanism by which ATF6 regulates H2S synthesis to ameliorate liver steatosis and inflammatory environment, we conducted the present study. We used the liver specific ATF6 knockout mice and fed on high-fat-diet, and found that H2S level was significantly downregulated in hepatic ATF6 knockout mice. Restoring H2S by the administration of slow H2S releasing agent GYY4137 ameliorated the hepatic steatosis and glucose tolerance. ATF6 directly binds to the promoter of cystathionine ß synthetase (CBS), an important enzyme in H2S synthesis. Thus, ATF6 could upregulate H2S production through CBS. Sulfhydrated Sirtuin-1 (SIRT1) was downregulated in ATF6 knockout mice. The expression of pro-inflammatory factor IL-17A was upregulated and anti-inflammatory factor IL-10 was downregulated in ATF6 knockout mice. Our results suggest that ATF6 can transcriptionally enhance CBS expression as well as H2S synthesis. ATF6 increases SIRT1 sulfhydration and ameliorates lipogenesis and inflammation in the fatty liver. Therefore, ATF6 could be a novel therapeutic strategy for high-fat diet induced fatty liver metabolic abnormalities.


Assuntos
Fígado Gorduroso , Sulfeto de Hidrogênio , Animais , Camundongos , Fator 6 Ativador da Transcrição/metabolismo , Cistationina/metabolismo , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Inflamação/metabolismo , Ligases/metabolismo , Fígado/metabolismo , Camundongos Knockout , Sirtuína 1/metabolismo
11.
J Mol Neurosci ; 73(11-12): 921-931, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37864623

RESUMO

We aimed to investigate the mechanism underlying the roles of miRNA-377, Cystathionine-ß-synthase (CBS), and hydrogen sulfide (H2S) in the development of hypoxic-ischemic encephalopathy (HIE). We investigated the relationship between CBS, H2S, and miR-377 in both humans with HIE and animals with hypoxic-ischemic insult. An animal model of fetal rats with hypoxic-ischemic brain injury was established, and the fetal rats were randomly assigned to control and hypoxic-ischemic groups for 15 min (mild) and 30 min (moderate) groups. Human samples were collected from children diagnosed with HIE. Healthy or non-neurological disease children were selected as the control group. Hematoxylin-eosin (HE) staining, quantitative real-time polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay (ELISA), and western blot were used to conduct this study. Hypoxia-ischemia induced pathological alterations in brain tissue changes were more severe in groups with severe hypoxic insult. miRNA-377 expression levels were upregulated in brain tissue and serum of fetal rats and human samples with HIE compared to controls. Conversely, CBS and H2S expression levels were significantly decreased in both human and animal samples compared to controls. Our findings suggest that CBS is a target gene of miR-377 which may contribute to the development of HIE by regulating CBS/H2S. H2S has a protective effect against hypoxic damage in brain tissue. The study provides new insights into the potential mechanisms underlying the protective role of H2S in hypoxic brain damage and may contribute to the development of novel therapies for HIE.


Assuntos
Sulfeto de Hidrogênio , Hipóxia-Isquemia Encefálica , MicroRNAs , Criança , Humanos , Ratos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Hipóxia-Isquemia Encefálica/genética , Cistationina , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Ratos Sprague-Dawley , Sulfeto de Hidrogênio/metabolismo
12.
Cell Death Dis ; 14(9): 591, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37673880

RESUMO

Oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV) consists of latent and lytic replication phases, both of which are important for the development of KSHV-related cancers. As one of the most abundant RNA modifications, N6-methyladenosine (m6A) and its related complexes regulate KSHV life cycle. However, the role of METTL16, a newly discovered RNA methyltransferase, in KSHV life cycle remains unknown. In this study, we have identified a suppressive role of METTL16 in KSHV lytic replication. METTL16 knockdown increased while METTL16 overexpression reduced KSHV lytic replication. METTL16 binding to and writing of m6A on MAT2A transcript are essential for its splicing, maturation and expression. As a rate-limiting enzyme in the methionine-S-adenosylmethionine (SAM) cycle, MAT2A catalyzes the conversion of L-methionine to SAM required for the transmethylation of protein, DNA and RNA, transamination of polyamines, and transsulfuration of cystathionine. Consequently, knockdown or chemical inhibition of MAT2A reduced intracellular SAM level and enhanced KSHV lytic replication. In contrast, SAM treatment was sufficient to inhibit KSHV lytic replication and reverse the effect of the enhanced KSHV lytic program caused by METTL16 or MAT2A knockdown. Mechanistically, METTL16 or MAT2A knockdown increased while SAM treatment decreased the intracellular reactive oxygen species level by altering glutathione level, which is essential for efficient KSHV lytic replication. These findings demonstrate that METTL16 suppresses KSHV lytic replication by modulating the SAM cycle to maintain intracellular SAM level and redox homeostasis, thus illustrating the linkage of KSHV life cycle with specific m6A modifications, and cellular metabolic and oxidative conditions.


Assuntos
Herpesvirus Humano 8 , S-Adenosilmetionina , Herpesvirus Humano 8/genética , Metionina , Cistationina , RNA
13.
Radiology ; 308(3): e232100, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37668521
14.
Radiology ; 308(3): e223255, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37668523

RESUMO

Background Noninvasive identification of glioma subtypes is important for optimizing treatment strategies. Purpose To compare the in vivo neurochemical profiles between isocitrate dehydrogenase (IDH) 1-mutant 1p/19q codeleted gliomas and their noncodeleted counterparts measured by MR spectroscopy at 3.0 T with a point-resolved spectroscopy (PRESS) sequence optimized for D-2-hydroxyglutarate (2HG) detection. Materials and Methods Adults with IDH1-mutant gliomas were retrospectively included for this study from two university hospitals (inclusion period: January 2015 to July 2016 and September 2019 to June 2021, respectively) based on availability of 1p/19q codeletion status and a PRESS acquisition optimized for 2HG detection (echo time, 97 msec) at 3.0 T before any treatment. Spectral analysis was performed using LCModel and a simulated basis set. Metabolite quantification was performed using the water signal as a reference and correcting for water and metabolite longitudinal and transverse relaxation time constants. Concentration ratios were computed using total creatine (tCr) and total choline. A two-tailed unpaired t test was used to compare metabolite concentrations obtained in codeleted versus noncodeleted gliomas, accounting for multiple comparisons. Results Thirty-one adults (mean age, 39 years ± 8 [SD]; 19 male) were included, and 19 metabolites were quantified. Cystathionine concentration was higher in codeleted (n = 13) than noncodeleted (n = 18) gliomas when quantification was performed using the water signal or tCr as references (2.33 mM ± 0.98 vs 0.93 mM ± 0.94, and 0.34 mM ± 0.14 vs 0.14 mM ± 0.14, respectively; both P < .001). The sensitivity and specificity of PRESS to detect codeletion by means of cystathionine quantification were 92% and 61%, respectively. Other metabolites did not show evidence of a difference between groups (P > .05). Conclusion Higher cystathionine levels were detected in IDH1-mutant 1p/19q codeleted gliomas than in their noncodeleted counterparts with use of a PRESS sequence optimized for 2HG detection. Of 19 metabolites quantified, only cystathionine showed evidence of a difference in concentration between groups. Clinical trial registry no. NCT01703962 © RSNA, 2023 See also the editorial by Lin in this issue.


Assuntos
Cistationina , Glioma , Adulto , Humanos , Masculino , Creatina , Glioma/diagnóstico por imagem , Glioma/genética , Espectroscopia de Ressonância Magnética , Receptores de Antígenos de Linfócitos T , Estudos Retrospectivos , Água , Feminino , Pessoa de Meia-Idade
15.
Res Vet Sci ; 162: 104956, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37516040

RESUMO

We investigated linkages among BCS prior to calving and placentome concentrations of metabolites, proteins in one­carbon metabolism (OCM) and protein synthesis, and nutrient transport. Multiparous Holstein cows retrospectively divided by prepartal BCS at -4 weeks relative to parturition into high BCS (HBCS = 3.58 ± 0.23; n = 9) or normal BCS (NBCS = 3.02 ± 0.17; n = 13) were used. BCS was assessed using a 5-point scale (1 = thin, 5 = fat). Four placentomes per cow were collected at delivery and frozen in liquid N. Western blotting was used for protein abundance. Cystathionine-ß-synthase (CBS) and betaine-homocysteine-S-methyltransferase (BHMT) activity were measured via 14C assays. Amino acids (AA) and metabolites in OCM were measured by liquid chromatography mass spectrometry (LC-MS). Compared with NBCS cows, the cellular stress sensor p-eIF2α was more than 2-fold greater (P = 0.04) in HBCS. Abundance of the AA-catabolism enzyme branched-chain α-ketoacid dehydrogenase complex was lower (P = 0.05) in HBCS cows. Although BHMT activity did not differ, greater concentration of betaine (P = 0.01) and lower (P = 0.05) concentration of dimethylglycine in HBCS cows suggested reduced flux through the methionine cycle. Despite a lack of difference in CBS activity, lower concentrations of cystathionine (P = 0.03) and hypotaurine (P = 0.04) along with lower cysteine and the tendency for lower total GSH (P = 0.10) in HBCS cows suggested a decrease in transsulfuration. Overall, associations between OCM in placentomes and BCS at calving exist. Identifying mechanisms responsible for these effects merits further research.


Assuntos
Lactação , Leite , Gravidez , Feminino , Bovinos , Animais , Leite/metabolismo , Betaína/análise , Betaína/metabolismo , Cistationina/análise , Cistationina/metabolismo , Estudos Retrospectivos , Placenta/metabolismo , Nutrientes , Proteínas de Membrana Transportadoras/metabolismo , Carbono/análise , Carbono/metabolismo , Dieta/veterinária , Período Pós-Parto
16.
Nutrients ; 15(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37513523

RESUMO

The main treatment for pyridoxine-nonresponsive cystathionine-ß-synthase deficiency is a strict diet. Most centers prescribe low-protein diets based on gram-protein exchanges, and all protein sources are weighed. The purpose of this study is to investigate the effects of a more liberal methionine (Met)-based diet with relaxed consumption of fruits and vegetables on metabolic outcomes and dietary adherence. Ten patients previously on a low-protein diet based on a gram-protein exchange list were enrolled. The natural protein exchange lists were switched to a "Met portion exchange list". Foods containing less than 0.005 g methionine per 100 g of the food were accepted as exchange-free foods. The switch to Met portioning had no adverse effects on the control of plasma homocysteine levels in terms of metabolic outcomes. It resulted in a significant reduction in patients' daily betaine dose. All patients preferred to continue with this modality. In conclusion, methionine-portion-based medical nutrition therapy with relaxed consumption of fruits and vegetables seems to be a good and safe option to achieve good metabolic outcomes and high treatment adherence.


Assuntos
Homocistinúria , Metionina , Humanos , Metionina/metabolismo , Piridoxina , Verduras/metabolismo , Cistationina , Frutas/metabolismo , Cistationina beta-Sintase/uso terapêutico , Racemetionina , Dieta com Restrição de Proteínas , Homocisteína
17.
Cancer Biol Med ; 20(7)2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37381723

RESUMO

Lung oncogenesis relies on intracellular cysteine to overcome oxidative stress. Several tumor types, including non-small cell lung cancer (NSCLC), upregulate the system xc- cystine/glutamate antiporter (xCT) through overexpression of the cystine transporter SLC7A11, thus sustaining intracellular cysteine levels to support glutathione synthesis. Nuclear factor erythroid 2-related factor 2 (NRF2) serves as a master regulator of oxidative stress resistance by regulating SLC7A11, whereas Kelch-like ECH-associated protein (KEAP1) acts as a cytoplasmic repressor of the oxidative responsive transcription factor NRF2. Mutations in KEAP1/NRF2 and p53 induce SLC7A11 activation in NSCLC. Extracellular cystine is crucial in supplying the intracellular cysteine levels necessary to combat oxidative stress. Disruptions in cystine availability lead to iron-dependent lipid peroxidation, thus resulting in a type of cell death called ferroptosis. Pharmacologic inhibitors of xCT (either SLC7A11 or GPX4) induce ferroptosis of NSCLC cells and other tumor types. When cystine uptake is impaired, the intracellular cysteine pool can be sustained by the transsulfuration pathway, which is catalyzed by cystathionine-B-synthase (CBS) and cystathionine g-lyase (CSE). The involvement of exogenous cysteine/cystine and the transsulfuration pathway in the cysteine pool and downstream metabolites results in compromised CD8+ T cell function and evasion of immunotherapy, diminishing immune response and potentially reducing the effectiveness of immunotherapeutic interventions. Pyroptosis is a previously unrecognized form of regulated cell death. In NSCLCs driven by EGFR, ALK, or KRAS, selective inhibitors induce pyroptotic cell death as well as apoptosis. After targeted therapy, the mitochondrial intrinsic apoptotic pathway is activated, thus leading to the cleavage and activation of caspase-3. Consequently, gasdermin E is activated, thus leading to permeabilization of the cytoplasmic membrane and cell-lytic pyroptosis (indicated by characteristic cell membrane ballooning). Breakthroughs in KRAS G12C allele-specific inhibitors and potential mechanisms of resistance are also discussed herein.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Cistina/metabolismo , Cisteína , Espécies Reativas de Oxigênio/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Cistationina , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas p21(ras) , Neoplasias Pulmonares/metabolismo
18.
Proteins ; 91(10): 1383-1393, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37163386

RESUMO

Cystathionine ß-synthase (CBS) catalyzes the condensation of l-serine and l-homocysteine to give l-cystathionine in the transsulfuration pathway. Recently, a few O-acetylserine (l-OAS)-dependent CBSs (OCBSs) have been found in bacteria that can exclusively function with l-OAS. CBS from Toxoplasma gondii (TgCBS) can efficiently use both l-serine and l-OAS to form l-cystathionine. In this work, a series of site-specific variants substituting S84, Y160, and Y246 with hydrophobic residues found at the same positions in OCBSs was generated to explore the roles of the hydroxyl moieties of these residues as determinants of l-serine/l-OAS preference in TgCBS. We found that the S84A/Y160F/Y246V triple mutant behaved like an OCBS in terms of both substrate requirements, showing ß-replacement activity only with l-OAS, and pH optimum, which is decreased by ~1 pH unit. Formation of a stable aminoacrylate upon reaction with l-serine is prevented by the triple mutation, indicating the importance of the H-bonds between the hydroxyl groups of Y160, Y246, and S84 with l-serine in formation of the intermediate. Analysis of the independent effect of each mutation on TgCBS activity and investigation of the protein-aminoacrylate complex structure allowed for the conclusion that the hydroxyl group of Y246 has a major, but not exclusive, role in controlling the l-serine preference by efficiently stabilizing its leaving group. These studies demonstrate that differences in substrate specificity of CBSs are controlled by natural variations in as few as three residue positions. A better understanding of substrate specificity in TgCBS will facilitate the design of new antimicrobial compounds.


Assuntos
Cistationina beta-Sintase , Toxoplasma , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/química , Cistationina beta-Sintase/metabolismo , Cistationina/química , Cistationina/metabolismo , Domínio Catalítico , Toxoplasma/genética , Toxoplasma/metabolismo , Serina/metabolismo , Cinética
19.
J Nutr ; 153(7): 2027-2040, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37164267

RESUMO

BACKGROUND: Plasma sulfur amino acids (SAAs), i.e., methionine, total cysteine (tCys), total homocysteine (tHcy), cystathionine, total glutathione (tGSH), and taurine, are potential risk factors for obesity and cardiometabolic disorders. However, except for plasma tHcy, little is known about how dietary intake modifies plasma SAA concentrations. OBJECTIVE: To investigate whether the intake of SAAs and proteins or diet quality is associated with plasma SAAs. METHODS: Data from a cross-sectional subset of The Maastricht Study (n = 1145, 50.5% men, 61 interquartile range: [55, 66] y, 22.5% with prediabetes and 34.3% with type 2 diabetes) were investigated. Dietary intake was assessed using a validated food frequency questionnaire. The intake of SAAs (total, methionine, and cysteine) and proteins (total, animal, and plant) was estimated from the Dutch and Danish food composition tables. Diet quality was assessed using the Dutch Healthy Diet Index, the Mediterranean Diet Score, and the Dietary Approaches to Stop Hypertension score. Fasting plasma SAAs were measured by liquid chromatography (LC) tandem mass spectrometry (MS) (LC/MS-MS). Associations were investigated with multiple linear regressions with tertiles of dietary intake measures (main exposures) and z-standardized plasma SAAs (outcomes). RESULTS: Intake of total SAAs and total proteins was positively associated with plasma tCys and cystathionine. Associations were stronger in women and in those with normal body weight. Higher intake of cysteine and plant proteins was associated with lower plasma tHcy and higher cystathionine. Higher methionine intake was associated with lower plasma tGSH, whereas cysteine intake was positively associated with tGSH. Higher intake of methionine and animal proteins was associated with higher plasma taurine. Better diet quality was consistently related to lower plasma tHcy concentrations, but it was not associated with the other SAAs. CONCLUSION: Targeted dietary modifications might be effective in modifying plasma concentrations of tCys, tHcy, and cystathionine, which have been associated with obesity and cardiometabolic disorders.


Assuntos
Aminoácidos Sulfúricos , Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Feminino , Humanos , Cisteína , Cistationina , Estudos Transversais , Dieta , Metionina , Obesidade , Taurina , Homocisteína
20.
Sci Rep ; 13(1): 7287, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142727

RESUMO

Hydrogen sulfide (H2S) is a gaseous signaling molecule that participates in various signaling functions in health and diseases. The tetrameric cystathionine γ-lyase (CSE) contributes to H2S biogenesis and several investigations provide evidence on the pharmacological modulation of CSE as a potential target for the treatment of a multitude of conditions. D-penicillamine (D-pen) has recently been reported to selectively impede CSE-catalyzed H2S production but the molecular bases for such inhibitory effect have not been investigated. In this study, we report that D-pen follows a mixed-inhibition mechanism to inhibit both cystathionine (CST) cleavage and H2S biogenesis by human CSE. To decipher the molecular mechanisms underlying such a mixed inhibition, we performed docking and molecular dynamics (MD) simulations. Interestingly, MD analysis of CST binding reveals a likely active site configuration prior to gem-diamine intermediate formation, particularly H-bond formation between the amino group of the substrate and the O3' of PLP. Similar analyses realized with both CST and D-pen identified three potent interfacial ligand-binding sites for D-pen and offered a rational for D-pen effect. Thus, inhibitor binding not only induces the creation of an entirely new interacting network at the vicinity of the interface between enzyme subunits, but it also exerts long range effects by propagating to the active site. Overall, our study paves the way for the design of new allosteric interfacial inhibitory compounds that will specifically modulate H2S biogenesis by cystathionine γ-lyase.


Assuntos
Sulfeto de Hidrogênio , Humanos , Sulfeto de Hidrogênio/metabolismo , Cistationina gama-Liase/metabolismo , Transdução de Sinais , Cistationina , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...